
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

More memory!
!

Atomics!
!

Pinned memory!
!

Mapped memory

20(74)

20(74)



Information Coding / Computer Graphics, ISY, LiTH

Atomic operations!
!

A special memory access method, for avoiding 
conflicts and race conditions.!

!
Available in CUDA from Compute model 1.1.!

!
To use it, specify model with!

!
-arch compute_11!

!
(or higher)

21(74)21(74)



Information Coding / Computer Graphics, ISY, LiTH

Example: Histogram!
!

Simple method for gathering statistics about a 
set of data. Much data in, little out.!

!
Common in image processing.!

!
for al elements i in a[]!

h[a[i]] +! 1

22(74)22(74)



Information Coding / Computer Graphics, ISY, LiTH

Histogram memory conflicts!
!

If you try to parallelize this operations, multiple threads will 
write simultaneously at the same item!

!
Non-atomic operations will read h[a[i]], add 1, and write back.

Read

Add 1

Write back

Read

Add 1

Write back

10

11

Read

Add 1

Write back

10

11

Write back11

10

Unknown write order

Add 1
Read

Write unsynchronized values in sequence

23(74)23(74)



Information Coding / Computer Graphics, ISY, LiTH

Solution: Atomics!
!

Read - modify - write in one operation!
!

Guaranteed not to be subject to racing!
!

atomicAdd, atomicSub, AromicExch, atomicMin, 
atomicMax, atomicInc, atomicDec, atomicCAS, 

atomicAND, atomicOR, atomicXor!
!

More types in Fermi and up

24(74)24(74)



Information Coding / Computer Graphics, ISY, LiTH

But it comes for a cost!!
!

Slower than other operations!
!

Global memory only as of Compute Capability 1.1!
!

Shared memory atomics in modern GPUs.!
!

Simpler but slower than reduction solutions!

25(74)25(74)



Information Coding / Computer Graphics, ISY, LiTH

Example: Find maximum!
!

for all elements i in a[]!
maxValue = max(maxValue, a[i])!

!
Easy? Yes! Parallel? No!!

!
All threads will write to the same memory 

element!!
!

Use atomics? Very slow! All write at the same 
time, must wait -> sequential performance!!

!
Solution: Use reduction instead!

26(74)26(74)



Information Coding / Computer Graphics, ISY, LiTH

Atomic conclusions!
!

Simplifies some operations!
!

Serializes conflicting operations!
!

Can hurt performance! Don't overuse!

27(74)27(74)



Information Coding / Computer Graphics, ISY, LiTH

Pinned memory!
!

Can boost performance for memory transfer!
!

Page-locked memory!
!

So far: malloc() and cudaMalloc()!
!

New call: cudaHostAlloc()!
!

Allocated page-locked memory! Fixed physical 
location!

28(74)28(74)



Information Coding / Computer Graphics, ISY, LiTH

Pinned memory!
!

Page-locked memory is a limited resource!!
!

For non-pinned memory, CUDA copies it 
internally to page-locked memory, then DMA to 

GPU. Transfer time goes up!

29(74)29(74)



Information Coding / Computer Graphics, ISY, LiTH

Pinned memory, streams, 
overlapping computation!

!
Pinned memory is part of an optimization 
approach with overlapping computations!

!
No longer just a slight speedup of data transfer!!

!
cudaMemCpyAsynch() can copy locked memory 

asynchronously!

30(74)30(74)



Information Coding / Computer Graphics, ISY, LiTH

Multiple streams!
!

CUDA commands are placed in a queue, a stream!!
!

These are the same queues as you can post CUDA 
events to.!

!
We usually only use the default CUDA stream.!

!
Multiple CUDA streams can be used to overlap work - 

especially computing and data transfers!

31(74)31(74)



Information Coding / Computer Graphics, ISY, LiTH

Copy result to CPU

Run kernel
Copy data to GPU

Copy result to CPU

Run kernel
Copy data to GPU

Single stream computation!
!

The kernel can not run until the data 
is transferred.!

!
For this example, 2/3 data transfer, 

1/3 computation

32(74)32(74)



Information Coding / Computer Graphics, ISY, LiTH

Dual stream computation!
!

While one stream runs a kernel, the 
other stream performs data copying,!

!
More time for computing, in this 

example kernels are running 1/2 of 
the time instead of 1/3.

Copy result to CPU

Run kernel
Copy data to GPU

Copy result to CPU

Run kernel
Copy data to GPU

Copy result to CPU

Run kernel
Copy data to GPU

Copy result to CPU

Run kernel
Copy data to GPU-

-

-

33(74)33(74)



Information Coding / Computer Graphics, ISY, LiTH

Not all devices...!
!

Asynchronous data copying as well as concurrent 
execution is not guaranteed...!

!
so make a device query!!

!
CU_DEVICE_ATTRIBUTE_ASYNCH_ENGINE_COUNT: 

Can we copy memory asynch?!
!

CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS: 
Can we run multiple kernels?

34(74)34(74)



Information Coding / Computer Graphics, ISY, LiTH

Mapped memory!
!

Mapped memory shared between CPU and 
GPU, no transfer needed!!

!
Must be page-locked.!

!
Data transfers overlapping kernel execution 

possible without multiple streams.!
!

See also zero-copy memory. !
!

Mapped memory seems convenient but may 
not be a performance advantage.

35(74)35(74)



Information Coding / Computer Graphics, ISY, LiTH

Debugging CUDA!
!

Let’s get a bit more efficient when your code 
doesn’t work!

!
• Catch error codes!

!
• printf() from kernels!

!
• cudagdb

36(74)36(74)



Information Coding / Computer Graphics, ISY, LiTH

Catch those error codes
// Check for errors everywhere	
err = cudaMalloc( (void**)&ad, csize );	
// If the GPU won't even take our data we are toasted	
if (err) printf("cudaMalloc %d %s\n", err, cudaGetErrorString(err));	
...		
dim3 dimBlock( blocksize, 1 );	
dim3 dimGrid( 1, 1 );	
hello<<<dimGrid, dimBlock>>>(ad, bd);	
// Most important thing to check? Did the kernel run at all?	
err = cudaPeekAtLastError();	
if (err) printf("cudaPeekAtLastError %d %s\n", err, cudaGetErrorString(err));

and pass them to cudaGetErrorString() for an explanation

37(74)37(74)



Information Coding / Computer Graphics, ISY, LiTH

printf() from kernels!
!

Yes - printf() if legal in a kernel since 
Compute Capability 2.0!

!
But don’t try to print 100000 messages per 

second... 

38(74)38(74)



Information Coding / Computer Graphics, ISY, LiTH

More advanced debugger tools!
!

There are more tools to help you out there!!
!

cudagdb!
!

Variant of the GDB debugger!
!

Allows breakpoints and single-stepping 
CUDA kernels!

39(74)39(74)


